Remarks on blowup of solutions for one‐dimensional compressible Navier–Stokes equations with Maxwell's law
نویسندگان
چکیده
Abstract In this note, we present some blowup results of solutions to the one‐dimensional compressible Navier–Stokes equations with Maxwell's law. First, improve result Hu and Wang [Math. Nachr. 92 (2019), 826–840] initial density away from vacuum by removing two restrictions. Next, give a for decay at far fields. Finally, construct special analytical exhibit or non‐blowup phenomena relaxed system.
منابع مشابه
Perturbational blowup solutions to the compressible Euler equations with damping
BACKGROUND The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. METHOD In this...
متن کاملBlowup Phenomenon of Solutions for the IBVP of the Compressible Euler Equations in Spherical Symmetry
The blowup phenomenon of solutions is investigated for the initial-boundary value problem (IBVP) of the N-dimensional Euler equations with spherical symmetry. We first show that there are only trivial solutions when the velocity is of the form c(t)|x| (α-1) x + b(t)(x/|x|) for any value of α ≠ 1 or any positive integer N ≠ 1. Then, we show that blowup phenomenon occurs when α = N = 1 and [Formu...
متن کاملCompressible Euler Equations with General Pressure Law
We study the hyperbolic system of Euler equations for an isentropic, compressible fluid governed by a general pressure law. The existence and regularity of the entropy kernel that generates the family of weak entropies is established by solving a new Euler-Poisson-Darboux equation, which is highly singular when the density of the fluid vanishes. New properties of cancellation of singularities i...
متن کاملBlowup solutions and their blowup rates for parabolic equations with non-standard growth conditions
This paper concerns classical solutions for homogeneous Dirichlet problem of parabolic equations coupled via exponential sources involving variable exponents. We first establish blowup criteria for positive solutions. And then, for radial solutions, we obtain optimal classification for simultaneous and non-simultaneous blowup, which is represented by using the maxima of the involved variable ex...
متن کاملOn Classical Solutions of the Compressible Magnetohydrodynamic Equations with Vacuum
Abstract. In this paper, we consider the 3-D compressible isentropic MHD equations with infinity electric conductivity. The existence of unique local classical solutions with vacuum is firstly established when the initial data is arbitrarily large, contains vacuum and satisfies some initial layer compatibility condition. The initial mass density needs not be bounded away from zero, it may vanis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2023
ISSN: ['1522-2616', '0025-584X']
DOI: https://doi.org/10.1002/mana.202200260